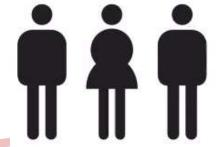
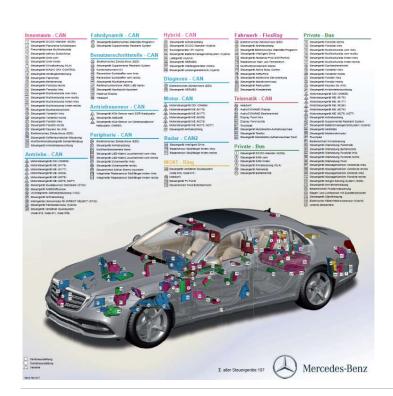
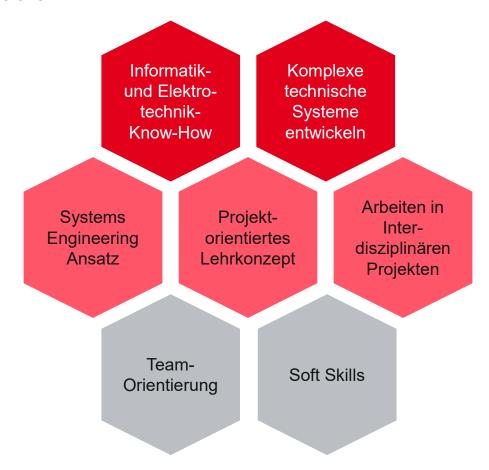

Studienkonzept


Mit Theorie und Praxis zum Erfolg



Embedded Systems


Aus Hard- und Softwarekomponenten bestehende Computersysteme, die in umfassenden technischen Produkten "eingebettet" sind

Embedded Systems studieren

Motivation für das Studium

Fakultät für Technik

Der Standort Friedrichshafen ist...

- INNOVATIV
- HAT EINEN SEHR ATTRAKTIVEN ARBEITSMARKT
- HAT EINE HOHE WIRTSCHAFTSKRAFT
- BIETET MIT DEM BODENSEE UND DER NÄHE ZU DEN ALPEN EINEN HOHEN FREIZEITWERT

<u>ein Studienort</u> <u>mit Zukunft</u> Studienangebot in Friedrichshafen

Elektrotechnik

Automation

Nachrichtentechnik – Kommunikationstechnik für Verkehrssysteme

Nachrichtentechnik – Nachrichten- und Kommunikationstechnik

Energie- und Umwelttechnik

Fahrzeugelektronik – Elektromobilität und alternative Antriebe

Fahrzeugelektronik – Embedded IT

Embedded Systems

Aerospace Engineering
Automotive Engineering

Informatik

Informationstechnik - Mobile Informatik / - IT Security

Luft- und Raumfahrttechnik

Luft- und Raumfahrtelektronik

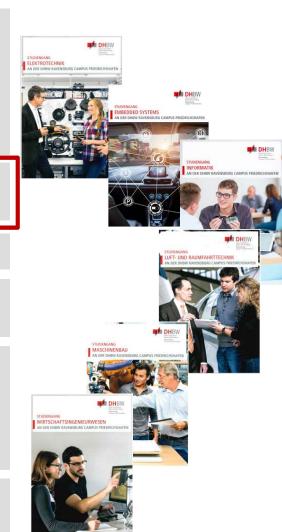
Luft- und Raumfahrtsysteme

Maschinenbau

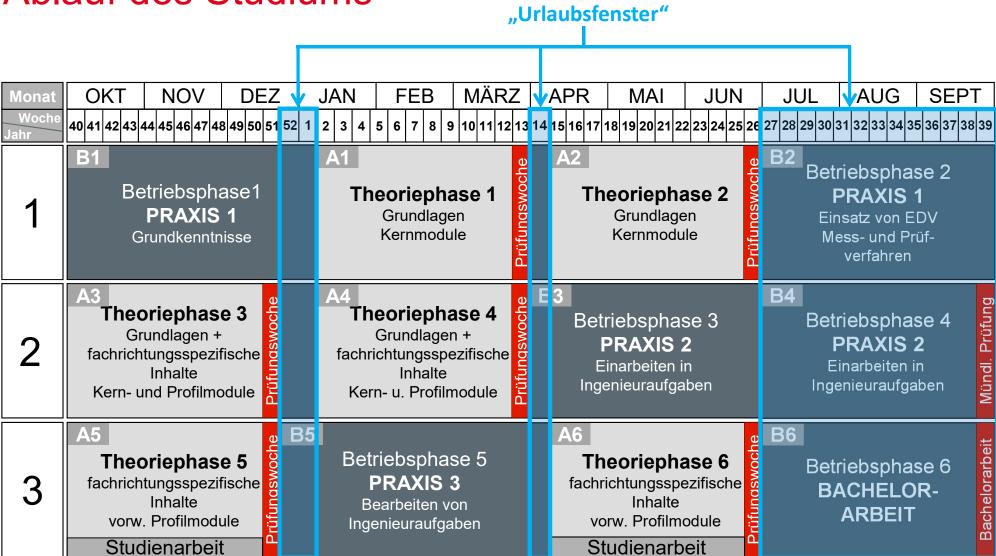
Fahrzeug-System-Engineering

Konstruktion und Entwicklung

Konstruktion und Entwicklung - Leichtbau


Konstruktion und Entwicklung - Mechatronische Systeme

Produktionstechnik - Produktion und Management


Wirtschaftsingenieurwesen

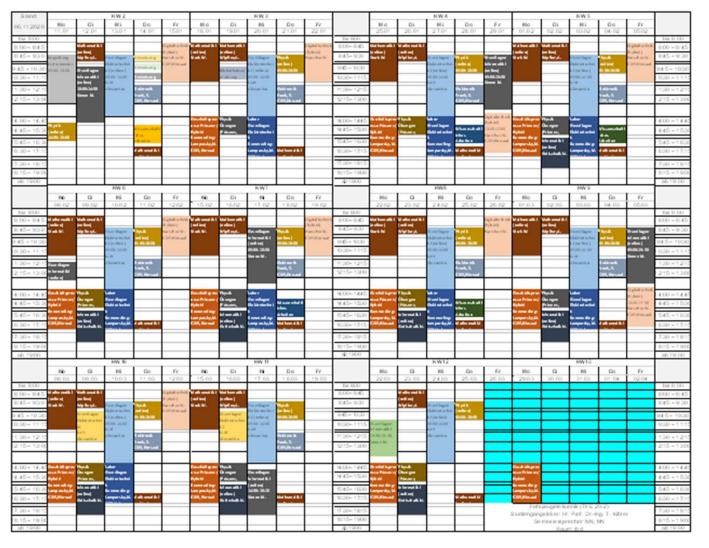
Elektrotechnik

Maschinenbau

Ablauf des Studiums

Inhalte der Praxisphasen

Praxis- phase	Inhalte - die detaillierte Ausgestaltung legt das Partnerunternehmen fest				
1	Erlernen von mechanischen, elektrotechnischen und informationstechnischen Grundfertigkeiten				
2	Programmieren in C/C++, Umgang mit Mikrocontrollern und Embedded Systemen. Erlernen von Grundfertigkeiten im Umgang mit Sensorik und Aktorik.				
3+4	Einführen in ingenieurmäßiges Arbeiten, Kennenlernen ingenieurmäßiger Zusammenhänge, Selbständige konkrete Lösung einer Ingenieuraufgabe unter Berücksichtigung theoretischer Erkenntnisse				
5	Selbständige Bearbeitung von Ingenieuraufgaben und Mitarbeit an Projekten				
6	Anfertigung einer Bachelorarbeit aus dem Bereich der Studienrichtung Das Thema der Bachelorarbeit wird vom Betrieb gestellt. Es kann von experimenteller, theoretischer oder konstruktiver Art sein oder eine beliebige Kombination dieser drei Möglichkeiten				

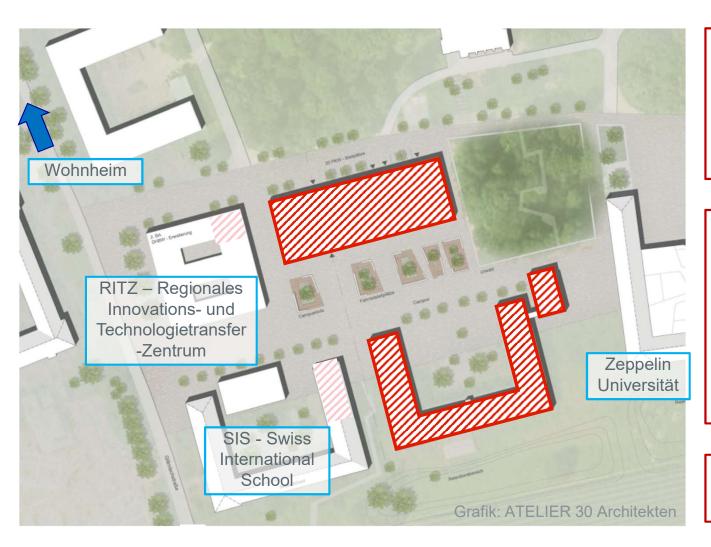


Lehrangebot Embedded Systems in den Theoriephasen

	Aerospace Engineering	Automotive Engineering		
(Auszug)	Echtzeitsysteme und sicherheitskritische Anwendungen	Embedded Systeme im Kfz		
Aus	Aerospace Software-Engineering	Automotive Software-Engineering		
	Vertiefung Programmieren	Vertiefung Programmieren		
tung	Bussysteme in der Luft- und Raumfahrt	Bussysteme im Kfz und Simulation		
Studienrichtungen	Modellbasierter Systementwurf in der LuR	Modellbasierte Entwicklung im Kfz		
dien	Elektrische und Elektronische Systeme	Fahrzeugtechnik / Fahrzeugelektronik		
	Hardware-/Software Codesign	Funktionale Sicherheit und Embedded Security im Kfz		
sbot	FPGA und VHDL-Programmierung	FPGA und VHDL-Programmierung		
Lehrangebot	Sensorik/Aktorik	Fahrzeugsensorik und Bilddatenverarbeitung		
	Signalverarbeitung	Funknetze und Car2X		
	Systems-Engineering in der LuR / Projektmanagement	Regelungssysteme		

sme	Semester 1	Semester 2	Semester 3	Semester 4	Semester 5	Semester 6
Syste	Mathematik I	Mathematik II	Mathematik III			
ged	Elektrotechnik I	Elektrotechnik II	Elektronik			
Embedded	Technische Informatik I	Technische Informatik II	Systemtheorie			
<u>a</u>	Physik			Regelungstechnik		
powi	Programmieren	Programmieren	Mikrocomputertechnik	Mikrocomputertechnik	Studienarbeit I	Studienarbeit II
Ker	Praxis I		Praxis II		Praxis III	Bachelorarbeit

Ein typischer Vorlesungsplan



11 Wochen Vorlesungen 1 Woche Klausurwoche

Übersicht Campus Fallenbrunnen

Neubau (ca. 2400 m²):

12 Vorlesungsräume

Werkstoffprüflabor

Hochvolt-Labor

Hubschrauber- und Flugzeugsimulator

EDI- und GFR-Projektraum

StuV

Hauptgebäude (ca. 4400 m²):

Verwaltung, Studiengänge, Sekretariate

16 Vorlesungsräume

7 PC-Labors (CAD, Linux, etc.)

Grundlagenlabore Elektrotechnik

Mechatronik-Labor

Energie- und Umwelttechnik-Labor

Telematik-Labor

Nachrichtentechnik-Labor

CIM-Labor

Ab 2021 im RITZ:

EMV-Labor

Labor autonomes Fahren und Robotik

Labore am Campus Friedrichshafen (Auszug)

Flugsimulatoren

Simulatoren für Hubschrauber und Flächenflugzeug

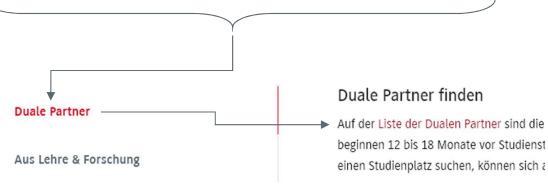
Labor für autonomes Fahren und Robotik

Versuche im Bereich der Robotik und autonomen Fahrzeugen. Versuche zu elektrischen Antrieben und Datenbussystemen

EMV-Labor

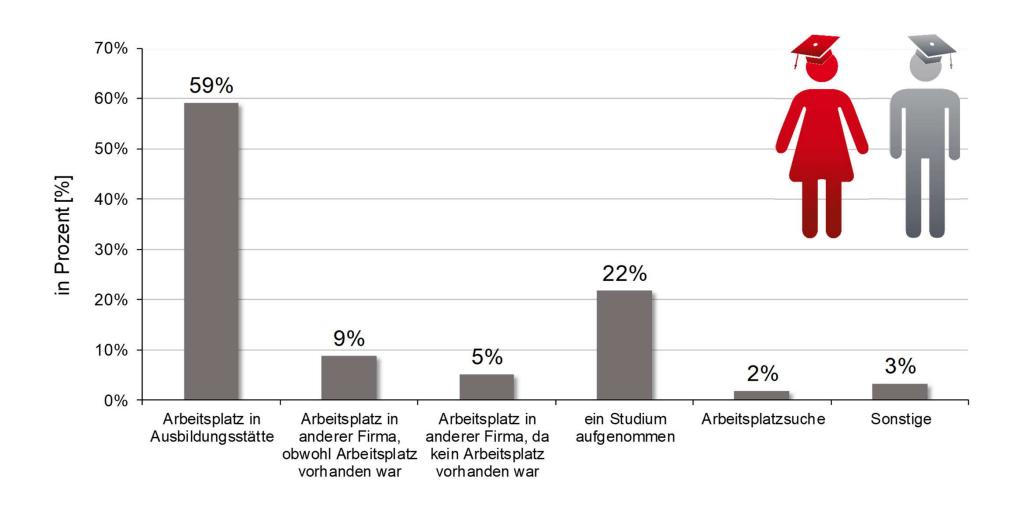
EMV-Kammer, Messtechnik zur Prüfung der elektromagnetischen Verträglichkeit in verschiedenen Frequenzbereichen

Duale Partner des Studiengangs Embedded Systems


Liste der Dualen Partnern mit Adressen und Ansprechpartnern unter

https://www.ravensburg.dhbw.de/studienangebot/bachelor-studiengaenge/

Angebot auswählen:



<u>So früh</u> wie möglich bewerben

Was machen die Absolventen nach dem Abschluss?

Campusleben

Studentische Projekte: Global Formula Racing

- Studiengangsübergreifendes Projekt
- ca. 50 DHBW-Studenten beteiligt
- jedes Jahr zwei neue Rennwagen mit Elektroantrieb und autonomen Funktionen
- Kooperation mit Oregon State University, Corvallis, OR, USA

Campusleben in Friedrichshafen

- Studentenwohnheim
- Veranstaltungen: StuV, VWI-Hochschulgruppe, DH rockt u.v.m.
- Studium Generale
- Maybach-Seminar
- Hochschulsport
- Campus-Band Funky Engineers

Allgemeine Studienberatung

Andrea Bürk Marienplatz 2 88212 Ravensburg

Tel.: 0751.18999.2115

Mail: studieninfo@dhbw-ravensburg.de

