
SCHRIFTENREIHE DER FAKULTÄT FÜR TECHNIK
DER DUALEN HOCHSCHULE BADEN-WÜRTTEMBERG
RAVENSBURG

2016/01

A Manipulation and Conversion Toolbox for POPINDA-
Formatted, Elliptic Hexahedral Meshes for the Use with
MegaCads and OpenFOAM
Martin Lichtmes

	 	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
SCHRIFTENREIHE	DER	FAKULTÄT	FÜR	TECHNIK		
DER	DUALEN	HOCHSCHULE	BADEN-WÜRTTEMBERG	
RAVENSBURG	
	
2016/01	

A	Manipulation	and	Conversion	Toolbox	for	POPINDA-Formatted,	
Elliptic	Hexahedral	Meshes	for	the	Use	with	MegaCads	and	
OpenFOAM	
Martin	Lichtmes	
	

	

	

	

	

IMPRESSUM	
	
Schriftenreihe	der	Fakultät	für	Technik		
der	Dualen	Hochschule	Baden-Württemberg	Ravensburg	
	
	
Herausgeber	
	
Prof.	Dr.	Martin	Freitag	
Prorektor	
	
Duale	Hochschule	Baden-Württemberg	Ravensburg	
Baden-Wuerttemberg	Cooperative	State	University	
Marienplatz	2	
88212	Ravensburg	
Deutschland	
	
http://www.dhbw-ravensburg.de	
	
	
	
2016/01,	Dezember	2016	
	
ISBN	978-3-945557-02-0	
ISSN	2199-238X	
DOI		10.12903/DHBW_RV_FN_01_2016_LICHTMES	
	
	
	
©		Lichtmes,	2016	
Alle	Rechte	vorbehalten.	
	
	
Der	 Inhalt	 der	 Publikation	 wurde	 mit	 größter	 Sorgfalt	 erstellt.	 Für	 die	 Richtigkeit,	 Vollständigkeit	 und	
Aktualität	des	Inhalts	übernimmt	der	Herausgeber	keine	Haftung.	
	
	
	
Druck	und	Verarbeitung	
	
Gestaltung	
Nicole	Stuepp	
DHBW	Ravensburg	
Marienplatz	2,	88212	Ravensburg	
	
Druck	
Frick	Kreativbüro	&	Onlinedruckerei	e.K.	
Brühlstraße	6	
86381	Krumbach	
	

	

	

A	Manipulation	and	Conversion	Toolbox	for	POPINDA-Formatted,	
Elliptic	Hexahedral	Meshes	for	the	Use	with	MegaCads	and	
OpenFOAM	
Martin	Lichtmes1	

ABSTRACT	

A	 conversion	 and	manipulation	 toolbox	 for	 POPINDA-formatted	 hexahedral	meshes,	 as	
may	 be	 used	 in	 Computational	 Fluid	 Dynamics	 (CFD)	 is	 presented.	 With	 a	 focus	 on	
ongoing	research	activities	regarding	IC-engine	aerodynamics	carried	out	at	the	Faculty	of	
Technology	 of	 the	 Baden-Württemberg	 Cooperative	 State	 University	 Ravensburg,	 the	
toolbox	 has	 mainly	 been	 developed	 to	 make	 elliptically	 smoothed	 hexahedral	 meshes	
conveniently	 available	 to	 the	 OpenFOAM	 CFD	 framework.	 The	 Software	 MegaCads	 is	
capable	of	 producing	meshes	of	 elliptic,	 hexahedral	 type	even	 for	 complex	 geometries.	
Therefore,	and	because	of	its	free	availability,	MegaCads	has	been	chosen	as	mesh	design	
basis	 in	 the	 given	 scope.	 The	 toolbox	 in	 its	 current	 version	 deals	 with	 ASCII	 encoded	
POPINDA	mesh	 files	and	offers	 several	manipulation	 routines	 such	as	 scaling,	extruding	
etc.	 to	 use	 in	 conjunction	 with	 MegaCads	 as	 well	 as	 the	 intended	 mesh	 conversion	
mechanisms.	The	paper	gives	an	overview	 regarding	 the	currently	 implemented	 toolset	
and	 briefly	 introduces	 the	 reader	 especially	 into	 how	 to	 use	 it	 as	 mesh	 conversion	
interface	between	MegaCads	and	OpenFOAM.	

Keywords:	 Elliptic,	 Hexahedral,	 Structured,	 Mesh,	 Grid,	 Manipulation,	 Conversion,	

Computational	Fluid	Dynamics,	CFD,	OpenFOAM,	MegaCads,	POPINDA,	FLOWer	

	
1		 Research	 Scientist	 (Fluid	 Dynamics),	 Research	 Division:	 „Motorische	 Verbrennung	 inhomogener	

Gasgemische“	 (IHGG;	 engl.:	 Internal	 Combustion	 of	 Inhomogeneous	 Gas	 Mixtures),	 Faculty	 of	
Technology,	DHBW	Ravensburg	

	

NOMENCLATURE	

Symbol	 SI	Base	Unit	 Description	

!	 	 Base	node	index	

!	 	 Cell	index	

!	 	 Cartesian	direction	variable	

!	 Extrusion	length	

!, #, $	
	 	 Direction	indices	

!	
	 mm 		∗	 Edge	length	

!", !$, !% 		 	 Number	of	points	in	!"#		-direction	

!", !$, !% 		 	 Number	of	cells	in	!"#		-direction	

!	
	

[°]	
	 Rotation/Revolution	angle	

!	
	 	 Scaling	factor	

!	
	 	 Translation	vector	

!", !$, !% 		 [mm]		∗	 Cartesian	translation	components	

T	
	 	 Transpose	

!	
	 [mm]		∗	 Absolute	distance	tolerance	

!	
	 	 Vertex	node	index	

!, #, $	
	 	 Cartesian	coordinates	

	 	 	

	

	

Abbrevations	 	 	

DHBW	 Baden-Württemberg	Cooperative	State	University	(Duale	Hochschule	
Baden-Württemberg)	

DLR	 Deutsches	Zentrum	für	Luft-	und	Raumfahrt	(engl.:	German	Aerospace	
Center)	

DNS	 Direct	Numerical	Simulation	

GUI	 Graphic	User	Interface	

Hex	 Hexahedral	

IC	 Internal	Combustion	

IHGG	 Motorische	Verbrennung	inhomogener	Gasgemische	(engl.:	Internal	
Combustion	of	Inhomogeneous	Gas	Mixtures)	

LES	 Large	Eddy	Simulation	

POPINDA	 Portable	Parallelisation	of	Industrial	Aerodynamic	Applications	

RANS	 Reynolds-Averaged	Navier-Stokes	

STL	 Stereolithography	

	

	

	

	

	

	

	

	

	

	

	
	

	 1	

1 INTRODUCTION	

Elliptic	 hexahedral	meshes	 (or	 grids)	 are	 of	 great	 use	 in	 Computational	 Fluid	 Dynamics	
(CFD),	 since	 they	 are	 known	 for	 being	 eminently	 suited	 for	 the	 numerical,	 discrete	
solution	 of	 the	 Navier-Stokes	 equations	which	 represent	 a	 nonlinear	 system	 of	 second	
order	partial	 differential	 equations	 [1].	 Besides	 their	 good	numerical	 fitness,	 structured	
hexahedral	 meshes	 can	 be	 stored	 in	 a	 very	 simple	 and	 compact	 ‘nested-points’ (cf.	
chapter	 3)	 arrangement,	 what	 makes	 it	 easy	 to	 store,	 manipulate	 or	 convert	 them	 in	
manifold	ways.	Whilst	the	open-source	CFD	framework	OpenFOAM	(Open	Field	Operation	
and	Manipulation)	 is	being	 shipped	with	advanced	mesh	generation	utilities	BlockMesh	
and	 SnappyHexMesh	 it	 does	not	offer	 the	desirable	 elliptical	 smoothing	 for	 hexahedral	
meshes	 [2,3].	 In	 contrast,	 creating	 this	 type	 of	meshes	 on	 complex	 geometries	 is	what	
MegaCads	 (Multiblock	 Elliptic	 Grid-Generation	 and	 Computer	 Aided	 Design	 System)	 is	
capable	of	[4,5,6].	MegaCads	is	freeware	and	comes	with	an	intuitive	GUI	(Graphic	User	
Interface).	The	meshes	can	be	parametrised	extensively	and	 for	experienced	or	at	 least	
ambitious	 users,	 there	 is	 practically	 no	 hard	 limitation	 in	 geometric	 or	 topological	
complexity	 of	 the	 resulting	mesh.	MegaCads	 has	 been	 developed	 by	 the	 DLR	 (German	

Aerospace	 Centre)	 and	may	 be	 acquired	 via	 their	 website	 http://www.megacads.dlr.de	

[5].	For	the	below	presented	work,	MegaCads	has	been	used	in	version	2.5.2.	At	present,	
MegaCads	 is	 not	 undergoing	 any	 major	 development	 [5]	 but	 it	 is	 highly	 usable	 in	 its	
current	 stage2.	 It	 offers	 manifold	 basic	 geometric	 operations	 to	 create	 parametric	
polygons,	splines,	vectors,	curves	or	surfaces	as	well	as	nonlinear	(e.g.	Poisson-type)	point	
distributions	 on	 curves,	 surfaces	 and	 volumes.	 The	 herein	 presented	 toolbox	 has	 been	
given	the	name	BLoOMYBOXX	which	loosely	relates	to	the	CFD	code	FLOWer	of	the	DLR	–	
within	MegaCads,	 the	 POPINDA	mesh	 format	 is	 referred	 to	 as	 ‘FLOWer	 format’	 –	 that	
utilises	POPINDA-formatted,	structured	meshes	and	to	the	box-like	shape	of	hexahedral	
cells.	POPINDA	stands	for	Portable	Parallelisation	of	 Industrial	Aerodynamic	Applications	

[7].		
	
	
	
	
	

	
2	Not	all	periphery	functionalities	are	fully	functional	or	operating	stable	(i.e.	ANSYS	output,	IGES	conversion	
etc.).	But	 to	our	knowledge	all	meshing	and	design	 features	 (geometric	and	mathematical	operators)	are	
working	as	intended/expected.	

	2	

OpenFOAM	 is	 property	 of	 the	 OpenFOAM	 Foundation	 Ltd.	 and	 released	 under	 GNU	
General	Public	License	 [2].	Herein,	OpenFOAM	has	been	used	 in	version	3.0.1.	BLoOMY-
BOXX	 is	 a	 Linux	 executable	written	 in	 C++	 and	 is	 in	 its	 current	 version	 0.2	 released	 as	
freeware.	 It	 has	 been	developed	 and	 tested	under	Ubuntu	 15.10	 (64	bit).	 To	 acquire	 a	
copy	 of	 BLoOMYBOXX	 please	 contact	 the	 Baden-Württemberg	 Cooperative	 State	
University	 (DHBW)	 Ravensburg	 using	 the	 author’s	 Email	 address	 (lichtmes@dhbw-

ravensburg.de)	or	visit	the	website	http://www.ravensburg.dhbw.de.		

2 MOTIVATION	AND	RELATED	RESEARCH	

Nowadays,	semi-	or	fully-automatic	mesh	generation	(e.g.	triangular,	tetra-	or	polyhedral)	
has	become	more	important	in	general	industrial	CFD	than	the	rather	manual	hexahedral	
meshing	because	of	 flexibility	 and	performance	 speed	 (cf.	 figure	 1).	 But	 among	 several	
known	drawbacks,	unstructured	or	hybrid	(partially	unstructured	and	structured)	meshes	
may	introduce	a	significant	lack	of	computational	accuracy	and	stability	alongside	higher	
computational	 efforts	 compared	 to	 more	 uniform	 and	 ‘cleaner’	 fully-structured	
hexahedral	(hex)	meshes.	Hex	meshes	therefore	still	receive	great	appreciation	especially	
in	 applications	where,	 for	 instance,	high	accuracy	or	 solution	 smoothness	 is	mandatory	
(i.e.	 fundamental	 research	 topics	 etc.).	 Since	 manually	 generated	 meshes	 can	 be	
controlled	more	precisely	by	the	user,	the	numerical	quality	may	be	driven	to	a	maximum	
even	regarding	single	selected	grid	cells	easily.	 In	CFD	such	high	quality	meshes	are	not	
only	 well	 suited	 for	 smooth	 and	 accurate	 RANS	 (Reynolds-Averaged	 Navier-Stokes)	
simulations	 but	 also	 for	 LES	 (Large	 Eddy	 Simulations)	 and	 even	 DNS	 (Direct	 Numerical	

Simulation).	 Of	 course,	 manual	 hex	 mesh	 generation	 often	 appears	 to	 be	 very	 time	
consuming.	 One	 must	 therefore	 be	 aware	 whether	 the	 manual	 or	 a	 rather	 automatic	
(unstructured)	approach	is	the	most	suitable	for	their	intended	purposes.		
	

	

Figure	1:		 On	unstructured	and	structured	meshing.	a)	A	physical	2D	domain	(e.g.	air	around	a	cylinder)	

b)	An	unstructured	approximation	of	‘a)’	by	unordered	triangles	and	quadrilaterals	c)	A	

structured	approximation	of	‘a)’	by	ordered	quadrilaterals	only	

a)

	 3	

	

The	 research	 division	Motorische	 Verbrennung	 inhomogener	Gasgemische	 (IHGG,	 engl.:	
Internal	Combustion	of	Inhomogeneous	Gas	Mixtures)	at	the	Faculty	of	Technology	of	the	
DHBW	are	undertaking	RANS	and	LES	simulations	regarding	medium	scale	four-valve	gas	
engines	(cylinder	volume	approx.	4.8	litres).	The	quality	requirements	of	the	simulations,	
the	 exceptional	 geometric	 and	 topologic	 complexity3	 of	 IC-engine	 (IC:	 internal	
combustion)	 models	 as	 well	 as	 the	 need	 to	 model	 moving	 and	 morphing	 meshes	 at	
comparatively	low	costs,	led	to	the	decision	of	harnessing	fully	hexahedral	meshes	as	they	
can	be	generated	using	MegaCads.	Since	all	CFD	simulations	within	that	scope	are	to	be	
performed	 using	OpenFOAM	 and	 there	 is	 no	 native	 connection	 or	 transfer	mechanism	
between	 MegaCads	 and	 OpenFOAM,	 it	 was	 obviously	 necessary	 to	 create	 such	 an	
interface.	Another	reason	for	developing	certain	‘tooltips’	(such	as	extrusion	or	rotation)	
is	the	fundamental	need	of	simple	manipulation	routines	for	the	quick	creation	of	regular	
but	 high	 quality	 mesh	 regions	 (e.g.	 straight	 inlet	 pipes,	 valve	 wakes,	 piston	 bowls).	 It	
turned	out,	 that	corresponding	 tasks	within	MegaCads	or	OpenFOAM	often	suffer	 from	
‘clumsiness’	 or	 less	 handy	 feasibility.	 Basically,	 all	 of	 these	 actions	might	 also	 either	 be	
taken	directly	within	MegaCads	and	OpenFOAM	or	via	dedicated	workarounds.	However,	
as	 a	matter	 of	 convenience	 and	 processing	 speed,	 it	 is	 desirable	 to	 have	 such	 tooltips	
available	alongside	the	mesh	conversion	utilities	when	preparing	a	mesh	for	the	intended	
purposes.		
	
Initially,	 (at	 least	 for	 the	 use	 in	 RANS	 simulations)	 the	 unstructured/hybrid	 mesh	
generators	GMSH	[8],	NETGEN	[9]	and	EnGrid4	[10]	have	been	utilised	for	benchmarking	
purposes	but	did	not	perform	sufficiently	in	the	above	mentioned	use	case,	as	either	the	
local	quality	of	the	resulting	mesh	was	not	satisfactory	or	the	generators	crashed,	while	
creating	the	base	mesh	in	critical	regions	of	the	highly	irregular	surface	geometry.	It	must	
be	 noted,	 that	 these	 issues	 occurred	mainly	 due	 to	 ill-conditioned	 or	 faulty	 underlying	
surface	 geometry	 (disjoint	 or	 duplicate	 surfaces	 etc.)	 which	 originates	 from	 reverse-
engineering	 data.	 The	OpenFOAM	utility	SnappyHexMesh	 has	 also	 been	 tried	 out	 for	
meshing	the	above-mentioned	IC-engine	geometry.	 It	succeeded	to	create	an	automatic	
mesh	for	the	provided	geometry	but	unfortunately	failed	 in	terms	of	usability	regarding	
control	of	 the	 local	mesh	quality	due	 to	 the	geometric	 complexity.	 For	 instance,	during	
flow	 computations	 based	 on	 SnappyHexMesh	 grids,	 numerical	 stability	 issues	 occurred	
that	have	been	traced	back	to	a	region	within	the	flow	domain	where	large	gradients	of	
velocity,	pressure	and	density	alongside	strong	geometric	non-uniformity	and	curvature	

	
3	Geometric	complexity	is	given	by	strong	and	alternating	local	surface	curvature	as	well	as	the	presence	of	
many	very	small	and	highly	non-uniform	surface	regions.	
4	GMSH	and	EnGrid	internally	make	use	of	NETGEN	and	TETGEN	[11].	

	4	

occurred. Hence,	 SnappyHexMesh	 was	 found	 not	 being	 flexible	 enough	 in	 the	 desired	
locations	 to	 obtain	 sufficient	 mesh	 quality	 under	 acceptable	 efforts.	 BlockMesh is	
considered	not	to	be	of	practical	 relevance	as	mesh-design	utility	within	the	mentioned	
scope	 due	 to	 its	 intrinsic	 methodologic	 limitations	 (cf.	 [2]).	 	 Table	 1	 summarises	 the	
considered	mesh	generators/utilities.	The	term	‘polymorph’	means	that	the	meshes	may	
consist	of	different	types	of	elements,	i.e.	tetrahedrals,	pyramids,	hexahedrals	and	more.	

	
Generator	 Mesh	Type	 Observation	

GMSH	 unstructured	(polymorph)	 crashed	
NETGEN	 unstructured	(polymorph)	 crashed	
EnGrid	 unstructured	(polymorph)	 crashed	

SnappyHexMesh	 unstructured	(polymorph)	
success	(long	processing	time),	

local	quality	insufficient	
BlockMesh	 unstructured	(polymorph)	 method	not	suited	

MegaCads	
structured	(quadrilateral	and	

hexahedral)	
success,	high	quality,	elaborate	

Table	1:	 Mesh	generators/utilities	that	have	been	considered	for	meshing	

3 ELLIPTIC,	STRUCTURED	MESHES	IN	MEGACADS	

As	 already	 mentioned,	 elliptic	 meshes	 are	 well	 suited	 for	 the	 use	 in	 many	 CFD	
applications.	 The	 term	 ‘elliptic’	 denotes	 the	 type	 of	 system	 of	 governing	 partial	
differential	equations	that	is	solved	to	distribute	the	grid	points.	The	reader	is	referred	to	
e.g.	[1]	for	more	detailed	information.	A	common	technique	–	as	harnessed	by	MegaCads	
–	 is	 to	 generate	 an	 algebraic	 base	 grid	 from	 boundary	 point-distributions	 and	 to	
redistribute	 the	 resulting	 off-boundary	 (internal)	 points	 in	 an	 ‘elliptic	 manner’.	 The	
underlying	algebraic	grids	in	general	show	a	rather	‘unruled’	distribution	of	points	with	at	
best	weak	respect	to	smoothness	or	cell	quality	requirements,	whereas	the	grid	points	of	
elliptic	 meshes	 are	 arranged	 much	 smoother	 and	 the	 grid	 lines	 tend	 to	 be	 more	
orthogonal	resulting	in	higher	quality	cells,	as	is	depicted	in	figure	2.	
	

	 5	

Figure	2:		 Comparison	between	algebraic	(black)	and	elliptic	(red)	2D	sample	grids.		

Left:	Algebraic	grid.	Middle:	Elliptic	grid.	Right:	Both	grids	overlaid	with	close-up	section.	

	

A	mesh	 is	 called	 ‘structured’	when	all	 cells	 are	arranged	 in	 a	 countable	order,	whereas	
‘unstructured’	meshes	 in	general	have	a	highly	 irregular	cell	ordering.	 In	structured	hex	
meshes	 the	 ‘countability’	 is	established	by	 introducing	 !"#		-directions	which	 refer	 to	 the	
normals	 of	 the	 three	 pairs	 of	 opposing	 faces	 of	 a	 hex	 cell.	 Hence,	 the	 indices	 of	 all	
neighbouring	cells	are	known	a	priori	by	knowing	the	index	of	the	cell	 in	the	centre	and	
the	total	number	of	cells	!", !$, !% 			in	!"#		-direction	of	a	grid	block.	Figure	3	describes	that	
relation	for	2D	cells	(extension	to	3D	is	straight-forward).	This	is	obviously	not	the	case	for	
unstructured	meshes.	 Any	 off-boundary	 hex	 cell	 in	 a	 fully	 hexahedral	mesh	 always	 has	
exactly	 six	 adjacent,	 neighbouring	 cells	 with	 regularly	 assigned	 indices.	 Structured	 hex	
cells	can	therefore	be	denoted	by	a	single	list	index	that	refers	to	its	position	in	the	grid.	
The	same	is	true	for	the	cell’s	vertices	(nodes).	
Because	any	first	order5	hex	cell	as	shown	in	figure	4	can	be	described	by	the	coordinates	
of	 its	eight	vertex	nodes	 (3D	points),	 the	structured	cell	arrangement	allows	 for	 storing	
the	 cells	 simply	 by	 means	 of	 ordered	 node	 lists.	 These	 lists	 implicitly	 contain	 all	 cell	
connectivity	information	that	is	needed	for	further	processing	(e.g.	cell	boundary	coupling	
for	 flux	 computation).	 The	 block	 connectivity	 of	 multi-block	 meshes	 is	 also	 included.	
Except	 for	 ‘hanging	 nodes’6	 block	 boundaries	 can	 be	 considered	 connected,	when	 two	
cells	 of	 separate	 block	 boundaries	 share	 exactly	 four	 identical	 nodes.	 Block	 boundaries	
may	either	belong	to	two	distinct	blocks	or	one	and	the	same	block.	
	

	
5	 ‘First	order’	means	 that	 there	are	no	additional	nodes	placed	on	 the	cell’s	boundary	 faces	or	boundary	
edges	and	the	nodes	are	connected	by	straight	lines	only.	
6	‘Hanging	nodes’	do	not	perfectly	match	a	counter-part	node	on	the	opposing	block	boundary	or	even	have	
none.	

	6	

	

	
	

	
	

Figure	3:										On	the	ordering	of	cells	 Figure	4:									A	hexahedral	cell	defined	by		
ordered	vertex	nodes	

As	 mentioned	 above,	 MegaCads	 is	 capable	 of	 producing	 elliptic	 meshes	 in	 2D	
(quadrilateral	 cells)	 and	3D	 (hexahedral	 cells)	 space.	The	POPINDA	output	of	MegaCads	
also	shows	the	favourable	points	ordering.	Furthermore,	with	a	focus	on	OpenFOAM	the	
intuitive	 GUI	 (cf.	 figure	 5)	 makes	 the	 mesh	 design	 process	 a	 lot	 more	 vivid	 and	
transparent	 compared	 to	 the	 command-line	 based	 solutions	 BlockMesh	 or	 Snappy-
HexMesh.	
	

	

Figure	5:	 The	MegaCads	GUI	[5]	

	 7	

4 THE	POPINDA	MESH	FORMAT	

The	 mesh	 output	 of	 MegaCads	 that	 is	 harnessed	 by	 the	 herein	 presented	 toolbox	 is	
shaped	 in	POPINDA-format.	The	POPINDA	 format	utilises	 the	 idea	of	points	ordering	as	
described	 above.	 A	 typical	 POPINDA	 hex	 mesh	 file	 is	 illustrated	 in	 figure	 6.	 The	 ‘$$’	
symbol	marks	commentary	lines.	The	first	integer	in	the	first	non-commentary	line	is	the	
total	 number	 of	 blocks	 in	 the	mesh	 file.	 The	 second	 and	 the	 third	 integer	 are	 at	 least	
within	 the	 named	 focus	 of	 no	 importance7	 and	 always	 set	 to	 ‘1’.	 The	 next	 non-

commentary	 line	contains	the	number	of	points	
!", !$, !% 			of	the	first	block	and	a	fourth	

integer	which	is	here	again	of	no	importance8	and	always	set	to	‘0’.	Any	block	consists	of		
	

	

! = !#×!%×!& 	

(1)

points,	which	form	a	total	of	
! = ($%-1)

)*
× ($,-1)

)-

× ($.-1)
)/

	

(2)

	
hexahedral	cells	simply	by	their	known	ordering.	Given	any	cell	in	accordance	to	figure	4,	

the	indices	of	the	eight	vertex	nodes	
!" …!$			of	each	cell	of	a	mesh	block	are	computed	as	

described	in	(3)	and	(4).	While	looping	over	
!, #		

	and	
!		
,	the	list	indices	of	each	node	of	any	

cell	can	be	derived	from	the	list	index	of	the	cell’s	base	node	
!		
	(node	1	in	accordance	to	

figure	4):	
	

! = # + %-1 () + *-1 ()(+ 	 (3)

!"($) = $	

(4)

!"($) = $ + 1	
!"($) = $ + () 	

!"($) = $ + () + 1	
!"($) = $ + ()(* 	

	
7	The	second	 integer	denotes	 the	number	of	multigrid	 levels	of	 the	mesh.	The	 third	 integer	 indicates	 the	
type	of	coordinate	system	used	[5].		
8	The	fourth	integer	denotes	the	number	of	‘ghost	cells’,	Ghost	cells	are	‘hypothetical’	cells	that	are	typically	
used	for	quantity	extrapolations	that	reach	beyond	the	mesh	boundaries	[5].	

	8	

!"($) = $ + ()(* + 1	
!"($) = $ + ()(* + () 	

!"($) = $ + ()(* + () + 1		
	
Thus,	the	entire	hex	mesh	can	immediately	be	constructed	from	the	POPINDA	points	list	
purely.	 Because	 OpenFOAM	 only	 ‘knows’	 unstructured	 meshes,	 the	 memory	 or	 linear	
solver	 related	 advantages	 of	 structured	meshing	 are	 not	 accessible	 to	 it.	 However,	 the	
manipulation	 and	 conversion	 procedures	 of	 the	 herein	 presented	 software	 make	
intensive	use	of	the	nested	data	arrangement.	
	

	
	

Figure	6:		 A	snippet	of	an	ASCII	encoded	POPINDA/FLOWer	mesh	file.	

	 9	

5 MESH	MANIPULATION	TOOLTIPS	

BLoOMYBOXX	comes	with	a	text-based	interactive	menu	which	enables	the	user	to	select	
the	 wished	 manipulation	 or	 conversion	 procedure	 to	 be	 performed	 on	 the	 user-
prescribed	 mesh.	 The	 interface	 displays	 some	 basic	 mesh	 properties,	 i.e.	 mesh	
development	 information	 as	 well	 as	 the	 number	 of	 points,	 blocks,	 cells	 and	 some	
additional	 data	 that	might	 be	 helpful	 for	 further	 processing.	 It	 interactively	 guides	 the	
user	 through	mesh	manipulation	 or	 conversion	 as	 illustrated	 in	 figure	 7.	 The	 available	
manipulation	tooltips	at	the	current	stage	of	development	are:	
	
̶ Clean	up	mesh	

̶ Scale	mesh	

̶ Translate	mesh	

̶ Extrude	2D	mesh	along	cartesian	axis	

̶ Rotate	mesh	

̶ Revolve	2D	mesh	around	cartesian	axis	

̶ Make	2D	mesh	axisymmetric	

̶ Mirror	mesh	over	xy-plane	

	
The	 meshes	 are	 kept	 in	 POPINDA	 format	 during	 all	 manipulation	 procedures,	 which	
means	 they	 can	 be	 manipulated	 and	 reread	 into	 the	 MegaCads	 environment	 as	 fully	
processible	grids.	To	perform	any	sort	of	manipulation	or	conversion,	one	must	specify	a	
POPINDA	shaped	ASCII	mesh	file.	The	software	is	simply	run	by	typing9	

$ bloomyboxx_alias <mesh-file>

in	a	 terminal	window	from	the	working	directory	where	<mesh-file>	refers	 to	the	mesh	
file’s	 path.	 BLoOMYBOXX	 handles	multi-block	 grids	 in	 2D	 and	 3D.	 It	 is	 clear	 that	 some	
tooltips	exclusively	apply	to	2D	or	3D	meshes	(e.g.	‘extrusion’).	

	
9	The	alias	‘bloomyboxx_alias’	must	point	to	the	location	of	the	executable	file.	

	10	

	

Figure	7a:	 	A	sample	BloOMYBOXX	run	(terminal	view	part	1).	The	mesh	reading	sequence.	

	 11	

	

Figure	7b:		 A	sample	BloOMYBOXX	run	(terminal	view	part	2).	The	processing	sequence.	A	2D	mesh	is	

being	extruded	in	!		-direction	at	a	new	total	of	4	!		-layers	and	an	extrusion	length	
! = 10	mm		.	

	

	12	

Clean	up	mesh	
The	 ‘clean	 up	 mesh’	 manipulator	 corrects	 slight	 non-zero	 inaccuracies	 of	 grid	 point	
coordinates	 in	 the	mesh.	 For	 instance,	 such	 inaccuracies	occur	often	when	points	 have	
been	 rotationally	 shifted	 or	 revolved,	 since	 those	 displacements	 cannot	 be	 calculated	
exactly	 due	 to	 numerical	 error.	 But	 also	 allegedly	 clean	meshes	 dumped	 by	MegaCads	
may	 contain	 very	 small	 but	 unwanted	 offsets	 that	 were	 introduced	 during	 mesh	

generation.	 The	 user	 can	 then	 prescribe	 an	 absolute	 correction	 tolerance	
!		
	 (e.g.			

!:= 10-'	mm		
),	 which	 the	 software	 will	 use	 to	 check	 whether	 a	 point’s	 (P)	 coordinate	

component	
!", $", %" 			is	to	be	set	to	zero	or	kept	as	it	is.	The	tooltip	is	applicable	to	both,	

2D	 and	 3D	 meshes.	 Consequently,	 it	 may	 also	 be	 utilised	 to	 project	 slightly	 uneven	
surfaces	onto	cartesian	planes.	
	

	

Figure	8:	Mesh	cleaned	up.	Original	mesh:	Red.	The	base	mesh	

shows	slight	inaccuracies	in	the	bottom	region	(see	close-up).	The	

cartesian	points	that	lie	within	the	user-prescribed	distance	

tolerance	!			from	any	axis	are	shifted	towards	the	corresponding	

one.	

	
	

	
	

Scale	Mesh	
As	the	name	suggests,	this	tooltip	simply	scales	2D	and	3D	meshes	by	a	user	prescribed	
scaling	factor	!		.	Scaling	can	yet	only	be	achieved	uniformly,	which	means	the	grid	is	being	

stretched	or	shrunk	in	all	three	cartesian	directions	by	the	same	factor.	
	
	

Figure	9:	Mesh	scaling.	Original	mesh:	Red.	The	base	mesh	has	

been	uniformly	scaled	by	a	factor	of	! = 1.2		.	

	
	
	
	
	
	

	
	

	 13	

Translate	Mesh	
2D	 and	 3D	 meshes	 will	 be	 translated	 along	 a	 user	 prescribed	 3D	 Cartesian	 vector	

! = #$, #&, #'
(.	

	
	
	

Figure	10:	Mesh	translation.	Original	mesh:	

Red.	The	base	mesh	has	been	translated	by	a	

vector	! = #/2, #/2, #/2 ' ,	where	! 	is	the	
edge	length	of	the	quadratic	bounding	box	of	

the	2D	base	grid.	

Extrude	2D	mesh	along	cartesian	axis	
	

When	 generating	 2D	 meshes	 with	 MegaCads	 there	 will	 only	 be	 one	 !		-layer	 (!" = 1).	
BLoOMYBOXX	offers	the	possibility	to	extrude	a	2D	mesh	in	the	!		-direction.	The	user	can	
prescribe	 the	 new	 number	 of	 resulting	 !		-layers,	 the	 length	 of	 extrusion	 !			 and	 the	
cartesian	direction	! = #, %, &			of	extrusion.	
	

	
	
	

Figure	11:	Mesh	extrusion.	Original	mesh:	Red.	The	2D	

base	grid	has	been	extruded	by	30	!		-layers	at	a	
negative	extrusion	length	matching	twice	the	edge	

length	of	the	quadratic	bounding	box	(! = −2%)	of	the	
base	grid.	The	direction	of	extrusion	is	! = #		.		

	
	

	
	

	14	

Rotate	mesh	
Similarly	to	the	translation	tooltip,	it	is	possible	to	rotate	a	2D	or	3D	mesh.	The	user	has	to	
choose	an	axis	! = #, %, &				of	rotation	and	a	rotation	angle	!			in	degrees.	

	
	
	

Figure	12:	Mesh	rotation.	Original	mesh:	Red.	The	

mesh	has	been	rotated	by	! = 25	°			around	the	
cartesian	!		-axis	(! = #).	

	
	
	
	
	
	
	
	
	
	

	
	
	

Revolve	2D	mesh	around	cartesian	axis	
Analogous	 to	 extrusion	 additional	 !		-layers	 are	 introduced	 to	 create	 a	 rotational	 3D	
extrusion	 of	 a	 2D	 base	 mesh.	 The	 user	 must	 specify	 a	 new	 number	 of	 !		-layers	 !" 		,	 a	
revolution	angle	!			in	degrees	and	the	cartesian	axis	!			of	revolution	!, #, $.		
	

	
	

Figure	13:	Mesh	revolution.	Original	mesh:	Red.	Volume	

mesh	created	by	revolution	of	the	2D	base	grid	by	

! = −270	°			around	the	!		-axis	(! = #).	

	
	
	
	
	
	
	
	

	

	 15	

Make	2D	mesh	axisymmetric	
Basically,	this	manipulator	works	 in	the	same	way	as	revolution	except	the	fact	that	the	
new	 number	 of	 !		-layers	 is	 restricted	 to	 being	 !":= 2			 and	 the	 revolution	 angle	 !			 is	
limited	 to	 a	 maximum	 value	 of	 5	 °	 for	 computational	 quality	 of	 the	 CFD	 solution.	
Additionally,	this	transformation	is	bounded	to	the	!		-axis	as	centre	of	revolution.	

	
	
	

Figure	14:	Mesh	made	axisymmetric.	Original	

mesh:	Red.	The	mesh	has	inversely	been	revolved	

by	a	single	additional	!		-layer.	

	
	
	
	
	
	
	
	
	
	
	

	
	
Since	different	solvers	handle	axisymmetry	 in	different	ways,	one	must	be	aware	of	the	
here	adopted	method:	
When	revolved,	the	original	2D	mesh	points	are	expected	to	lie	perfectly	in	the	!"		-plane	
(!" = 0		;	one	may	want	to	run	‘Clean	up	mesh’	in	advance).	The	new	!		-coordinates	of	the	
3D	grid	points	are	computed	by	duplicating	the	2D	points	and	symmetrically	shifting	them	
at	 an	 angle	 of	 ±"/2			 around	 the	 !		-axis.	 To	 address	 the	 requirements	 of	 the	 below	

described	conversion	to	OpenFOAM	[3]	the	duplicate	points	at	!" ≡ 0			(points	on	the	axis	
of	 symmetry)	 collapse	 perfectly10,	 resulting	 in	wedge	 or	 prism	 elements	 instead	 of	 hex	
cells	(cf.	figure	15	and	[3]).	Wedge	or	prism	elements	are	also	created	when	revolution	is	
applied	and	points	are	located	at	the	axis	of	revolution.		

	
10	Some	solvers	expect	a	small	non-zero	distance	between	those	‘axis	points’.	

	16	

	
	

Figure	15:	Prism	type	cells	at	the	axis	of	revolution.		

	
	
	
	
	
	

	
	

Mirror	mesh	over	!"		-plane	
When	 mirrored,	 a	 2D	 or	 3D	 mesh’s	 points	 are	 being	 inversely	 duplicated.	 Yet,	 only	
mirroring	over	the	!"		-plane	is	implemented	which	means	there	are	no	parameters	to	be	

specified	 by	 the	 user.	 The	 mirror	 image	 and	 the	 base	 mesh	 are	 not	 being	 block-wise	
unified.	This	means,	with	respect	to	the	original	mesh,	the	mirror	image	is	represented	by	
one	or	more	additional	block(s).	

	

Figure	16:	Mesh	mirroring.	

Original	mesh:	Red.	The	mirror	

image	represents	an	additional	

mesh	block.	The	arrow	marks	

the	!"		-plane’s	normal	vector.	

The	original	2D	mesh	has	been	

rotated	by	90			°	around	the	!		-
axis	before	mirroring.	

6 MESH	CONVERSION	TOOLTIPS	

The	following	mesh	conversion	tooltips	are	currently	implemented	in	BLoOMYBOXX:	
• Tecplot®	DAT	format	
• OpenFOAM	BlockMeshDict	
• GMSH	2.0	format	(yet	experimental)	

The	Tecplot®	DAT	support	 is	mainly	 intended	to	serve	 for	mesh	viewing	purposes	using	
established	 software,	 i.e.	 Tecplot®,	 ParaView	 or	 others.	 The	 two	 other	 formats	
immediately	serve	as	input	for	CFD	solvers	or	alternative	preprocessing	software.		

	 17	

As	mentioned	 above,	 one	 of	 the	main	 purposes	 of	 the	 toolbox	 initially	was	 to	 convert	
POPINDA	meshes	into	a	grid	format	readable	for	OpenFOAM.	Since	also	alternative	mesh	
formats	such	as	Tecplot®	[12],	VTK	(Visual	Toolkit)	[13]	or	GMSH	are	expected	to	be	useful	
within	 the	mentioned	 research	 scope,	 a	 rather	 ‘common’	 arrangement	 of	 the	 resulting	
mesh	data	has	been	chosen:	
For	 instance,	plain	ordered	(structured)	Tecplot®	files	can	easily	be	generated	simply	by	
adapting	 file	 and	block	header	 sequences	of	 the	POPINDA	 files,	 because	 the	points	 are	
arranged	in	identical	manner	[14].	Instead,	the	polymorph	unordered	(unstructured)	VTK,	
GMSH	or	OpenFOAM	meshes	 cannot	be	 created	 in	 the	 same	way	but	explicitly	 require	
preassembling	of	the	cells	from	point	data.	OpenFOAM	itself	utilises	the	‘face-addressing’	
PolyMesh	format	[3].	But	BlockMesh	files	(BlockMeshDict)	are	apparently	easier	to	derive	
from	plain	point	data	than	PolyMesh	grids,	as	they	show	strong	similarity	to	the	usual,	cell	
based	unstructured	grid	formats,	such	as	VTK	or	GMSH.	Furthermore,	MegaCads	meshes	
are	 purely	 hexahedral	 in	 3D	 and	 because	 of	 their	 known	 ordering,	 it	 is	 reasonable	 to	
adopt	a	simpler,	cell	based	conversion	mechanism	closer	to	common	formats.	This	can	be	
achieved	by	creating	a	BlockMeshDict	shaped	‘grid	file’11,	consisting	purely	of	hexahedral	
blocks	 with	 each	 block	 consisting	 of	 a	 single	 cell	 only.	 One	 can	 then	 simply	 command	
BlockMesh	 to	 take	on	 the	hard	work	of	 creating	 the	 face-addressing	PolyMesh	grid	 for	
OpenFOAM.	BlockMesh	will	transform	the	one-cell	hex	blocks	back	into	ordinary	hex	cells	
that	–	 in	 terms	of	 their	 geometry	–	perfectly	 represent	 the	 former	POPINDA	 formatted	
mesh.	The	chosen	method	meaning	simplicity	and	development	speed,	BLoOMYBOXX	has	
been	given	the	ability	to	construct	BlockMeshDicts	from	points	instead	of	PolyMesh	grids.	
A	 snippet	 of	 a	 sample	 BlockMeshDict	 created	 from	 a	 POPINDA	 mesh	 file	 using	
BLoOMYBOXX	is	depicted	in	figure	16.	The	term	‘hex’	in	the	‘blocks(…)’	section	stands	
for	hexahedral	blocks.	The	eight	 integers	 in	 the	subsequent	parentheses	denote	the	 list	
indices	of	the	block	defining	vertices	that	are	stored	in	the	‘vertices’	section.	The	second	
parentheses	represents	the	numbers	of	cells	within	the	corresponding	block	 in	all	 three	
!"#		-directions	and	is	according	to	the	above-mentioned	single-cell-block	approach	always	

set	to	‘(1 1 1)’.	The	instruction	‘simpleGrading (1 1 1)’	commands	BlockMesh	
to	 use	 constant	 cell	 sizes	 across	 the	 corresponding	block.	 The	 latter	 part	 of	 each	block	
definition	 line	 is	 mandatory	 but	 obviously	 meaningless	 since	 the	 mesh	 will	 result	 in	 a	
single	cell	per	block	anyway.	

	
11	For	BlockMesh	a	BlockMeshDict	is	not	a	‘grid’	file	but	rather	a	grid	generation	script.	

	18	

	

Figure	16:	 	A	snippet	of	a	sample	BlockMeshDict	file	done	with	BLoOMYBOXX.	The	section	where	the	

single-cell-hex-blocks	are	defined	is	highlighted	by	a	dashed	box.	

	

At	the	current	stage	of	development	boundary	patches	at	the	outer	block	boundaries	of	
the	 mesh	 are	 not	 created	 automatically,	 when	 converting	 the	 mesh	 into	 any	 other	
format.	But	 regarding	OpenFOAM,	 there	 is	a	general	workaround	available	 to	do	so,	as	
shown	in	the	following	chapter.	

	 19	

7 MESH	USE	IN	OPENFOAM	

When	 an	 OpenFOAM	 mesh	 is	 to	 be	 created	 based	 on	 the	 described	 POPINDA-to-
BlockMeshDict	 interface,	 one	 will	 have	 to	 specify	 boundary	 conditions	 on	 the	 mesh	
boundaries	manually.	As	BLoOMYBOXX	in	its	current	version	does	not	support	automatic	
boundary	 patching,	 the	 following	 procedure	 is	 recommended	 to	 create	 boundary	
patches:		

1. Create	the	desired	BlockMeshDict	file	using	BLoOMYBOXX.	
	

2. Move	 the	BlockMeshDict	 file	 into	 a	 properly	 set	 up	OpenFOAM	case	 directory’s	
‘system’	folder.	

	
3. Run	

	
$ blockMesh
	
from	 the	 top	 level	 of	 the	 case	 directory	 and	monitor	 the	 output.	 If	 BlockMesh	
complains	about	negative	cell	volumes	–	which	is	likely	to	occur	in	cases	of	former	
extrusion	or	revolution	–	 it	 is	recommended	to	rerun	extrusion/revolution	 in	the	
opposite	 direction	 (extrusion:	 negative	 extrusion	 length	 !		,	 revolution:	 negative	
revolution	 angle	 !).	 BlockMesh	 will	 dump	 the	 new	 mesh	 in	 OpenFOAM’s	

PolyMesh	format	in	the	case’s	‘constant/polyMesh’	directory.	
	

4. Now	 run	 OpenFOAM’s	 automatic	 patching	 utility	 ‘AutoPatch’	 using	 a	 sufficient	
patch	detection	angle	<angle>	in	degrees:	
	
$ autoPatch –overwrite <angle>
	
As	 the	name	 implies,	 this	will	 create	patches	 (named	 ‘auto0’,	 ‘auto1’	 ...)	 on	 the	
new	PolyMesh’s	block	boundaries.	
	

5. ParaFOAM	 –	 OpenFOAM’s	 software	 adaptation	 of	 the	 third-party	 resource	
ParaView	[2,3,15]	–	may	then	be	used	to	determine	which	of	the	generated	patch	
names	 belongs	 to	 a	 specific	 block	 boundary.	 Either	 make	 sure,	 the	 working	
directory	does	not	contain	a	time-step		directory	(i.e.	‘0’	etc.)	with	‘U’	and	‘p’	file	
in	 it	 or,	 after	 ParaFOAM	 has	 launched,	 uncheck	 the	 corresponding	 fields	 in	 the	
load	options	of	the	case	before	hitting	‘Apply’.	Otherwise,	ParaFOAM	will	happen	
to	 crash	 because	 it	 cannot	 find	 the	 matching	 patch	 fields	 as	 they	 are	 not	 yet	
defined.	ParaFOAM	is	launched	from	the	case	directory	by	typing:	
	
$ paraFoam

	20	

6. Resulting	unwanted	and	duplicate	internal	block	boundaries	can	be	eliminated	by	
applying	 the	 ‘StitchMesh’	utility	 tagged	 ‘–perfect’	on	coinciding	patches	<1>	and	
<2>:	
	
$ stitchMesh <1> <2> -perfect
	

7. The	 ‘CreatePatch’	 utility	may	 then	 be	 harnessed	 to	 round	 up	 patch	mapping	 by	
concatenating	 disjoint	 but	 coherent	 patches,	 creating	 patch	 groups,	 renaming	
them	or	even	assigning	adequate	boundary-conditions	(cf.	[2]).	
	

Since	 OpenFOAM	 also	 offers	 several	 backwards	 directed	mesh	 conversion	 utilities	 one	
can	afterwards	(at	least	intermediately)	transfer	the	former	POPINDA	meshes	into	almost	
any	wished	CFD	or	meshing	environment	(see	[2]	for	further	information).	

8 CLOSING	REMARKS	AND	OUTLOOK	

The	toolbox,	as	described	herein,	is	being	intensively	used	within	the	frame	of	the	above	
named	research	regarding	IC-engine	CFD.	All	tooltips	for	manipulation	and	conversion	are	
thus	 being	 steadily	 tested,	 improved	 and	 even	 extended.	 The	 software	 provides	 handy	
opportunities	 and	 shortcuts	 regarding	 multi-block	 based	 mesh	 generation	 and	
conversion.	
Yet,	there	has	not	been	observed	any	hard	limitation	concerning	the	use	for	manipulation	
or	 conversion,	 although	 it	 turned	 out	 that	 BlockMesh	 takes	 quite	 a	while	 (up	 to	 some	
hours)	to	process	larger	grids	of	e.g.	several	million	cells.	There	might	be	a	slight	increase	
in	performance	speed	when	using	binary	encoded	files	but	until	now,	that	assumption	has	
not	been	tested	or	verified.	Furthermore	it	is	clear,	that	a	direct	‘POPINDA-to-PolyMesh’	
approach	 will	 result	 in	 faster	 conversion.	 The	 implementation	 of	 such	 a	 routine	 is	
therefore	planned	to	take	place	in	upcoming	releases	of	BLoOMYBOXX.	
Although	 MegaCads	 is	 older	 software,	 there	 is	 still	 a	 justified	 interest	 in	 highly	
controllable,	 customisable	 and	 high	 quality	 hex	 meshes.	 Thus,	 it	 meets	 many	 current	
technical	needs	 just	as	good	as	any	 ‘up-to-date’	commercial	 structured	mesh	generator	
does.	 At	 least	 within	 the	 intended	 high	 quality	 CFD	 on	 IC-engines,	 the	 benefits	 of	
harnessing	MegaCads	 in	 conjunction	with	OpenFOAM	mean	a	massive	 research	 related	
relevance	 of	 both	 software	 products.	 BLoOMYBOXX	 will	 thus	 undergo	 further	
development	 to	 extend	 its	 capabilities	 and	 flexibility.	 Upcoming	 manipulation	 tooltips	
may	 include	 mesh-merging	 and	 mesh-decomposition,	 non-uniform	 extrusion,	 mesh-
morphing	(e.g.	to	model	engine	motion)	or	the	construction	of	regular	mesh	patters	(i.e.	
groups	of	turbine	blades	etc.),	while	future	conversion	utilities	are	most	likely	aiming	on	

	 21	

implementation	 of	 a	 direct	 PolyMesh	 (to	 speed	 up	 mesh	 conversion)	 or	 VTK	 export,	
boundary	 patching	 as	 well	 as	 boundary	 patch	 based	 triangulation	 to	 derive	 STL	
(Stereolithography)	surface	representations	and	more.	
Some	 functionalities	 of	 the	 toolbox	 are	 dedicated	 explicitly	 to	 OpenFOAM-specific	
topologic	requirements	such	as	the	wedge/prism-approach	for	axisymmetric	simulations.	
However,	the	toolbox	is	not	restricted	to	be	only	of	use	when	working	with	OpenFOAM	
but	might	also	be	helpful	in	conjunction	with	MegaCads	meshing	itself,	FLOWer	or		–	for	
instance,	via	OpenFOAM’s	mesh	conversion	utilities	–	any	other	CFD	code.	

	22	

ACKNOWLEDGEMENTS	

The	author	gratefully	acknowledges	provision	of	the	software	MegaCads	for	teaching	and	
research	purposes	by	the	DLR.	
	

	 23	

REFERENCE	

[1]	 Thompson	 J.	 F.,	 Soni	B.	 K.,	Weatherill	N.	 P.;	 „Handbook	of	Grid	Generation“	 (1999);	
CRC	Press,	ISBN	0-8493-2687-7	
[2]	OpenFOAM	online	presence;	OpenCFD	Ltd.	at	OpenFOAM	Foundation	Ltd.;	Date	of	
access:	27.06.2015;	URL:	http://www.openfoam.com	

[3]	 OpenFOAM	 Foundation	 Ltd.;	 “OpenFOAM	 –	 The	 Open	 Source	 CFD	 Toolbox;	 User	

Guide”	(2015)	
[4]	German	Aerospace	Centre	(DLR)	online	presence;	Date	of	access:	13.10.2015;																						
URL:	http://www.dlr.de	
[5]	 MegaCads	 online	 presence;	 German	 Aerospace	 Centre	 (DLR);	 Date	 of	 access:	
13.10.2015;	URL:	http://www.megacads.de	

[6]	Hepperle	M.,	Brodersen	O.	Ronzheimer	A.	Schöning	B.,	Rossow	C.	C.;	„The	Parametric	

Grid	 Generation	 System	 MegaCads“	 (1996);	 Proceedings	 of	 the	 5th	 International	
Conference	on	Numerical	Grid	Generation	in	Computational	Field	Simulations;	Mississippi	
(USA)	
[7]	ERCIM	NEWS	Online	Edition	online	presence;	European	Research	Consortium	for	

Informatics	and	Mathematics;	Date	of	access:	01.07.2016;		
URL:	http://www.ercim.eu/publicaton/Ercim	_News/enw32/schueller.html	
[8]	GMSH	online	presence;	Geuzaine	C.,	Remacle	J.	F.;	Date	of	access:	01.07.2016;																							
URL:	http://www.gmsh.info	
[9]	NETGEN	online	presence;	Date	of	access:	01.07.2016;																																																																						
URL:	http://www.hpfem.jku.at/netgen/	

[10]	EnGrid	online	presence;	EnGits	GmbH;	Date	of	access:	01.07.2016;																																						
URL:	http://www.engits.eu	
[11]	TETGEN	online	presence;	Si	H.;	Date	of	access:	01.07.2016;																																																
URL:	http://www.wias-berlin.de/software/tetgen/	
[12]	Tecplot®	online	presence;	Tecplot	Inc.;	Date	of	access:	13.10.2015;																																										
URL:	http://www.tecplot.com	
[13]	VTK	online	presence;	Kitware	Inc.;	Date	of	access:	13.10.2015;																																									
URL:	http://www.vtk.org	
[14]	Tecplot	Inc.;	“Tecplot	360	–	Data	Format	Guide”	(2008)	
[15]	ParaView	online	presence;	Kitware	Inc.;	Date	of	access:	13.10.2015;																																					
URL:	http://www.paraview.org	
	

Herausgeber

Prof. Dr.-Ing. Martin Freitag
Dekan der Fakultät für Technik

Duale Hochschule Baden-Württemberg Ravensburg
Baden-Wuerttemberg Cooperative State University
Marienplatz 2
88212 Ravensburg

ISBN: 978-3-945557-02-0

ISSN: 2199-238X

DOI: 10.12903/DHBW_RV_FN_01_2016_Lichtmes

