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1 INTRODUCTION AND AIM 

 Today in Industrial automation, engineers strive to make the robotic system smarter and 
more flexible to increase productivity in manufacturing. A common task for the robot in a 
production line is repetitive picking and placing of a randomly placed object with an 
effective automated manipulation system. Grasping a random object in its real-world 
environment is a challenging task for the robot, which involves perception, planning and 
execution. This process is also called bin picking [1], which can recognize and localize the 
random object to effectively perform robot pick and place.   
 
Deep learning-based methods have achieved excellent results in robotic grasping 
detection in recent years. The deep convolution network can extract the object's features 
by utilizing the two-dimension image and projecting it into a three-dimension to generate 
a robot grasp [2]. Many works, such as [3–5], trained with huge datasets to predict the 
grasp pose of an object. This work utilized 70+ images for training a deep convolution 
network model to segment the desired objects in the robot's environment and 
successfully perform a 2D-planar grasp. 

2 RELATED WORK 

In the past few years, bin picking solution has been increasing in demand, and various 
research has proposed different techniques to tackle this problem. The most common 
answer is STL or CAD matching with Point Cloud from the camera. The research by [6] 
uses the Interactive Closest Point algorithm(ICP) on Point Cloud from the camera to 
determine the best fitting points with respect to the reference CAD or STL object model. 
For the better points to reference model for ICP, [7] improves density-based spatial 
clustering of applications with noise (DBSCAN) algorithm for better point cloud 
segmentation. The study by [8] proposed a cost-effective solution to fuse RGB camera 
and Time of Flight (ToF) depth camera to improve object segmentation accuracy. 
However, these approaches are limited by 3D sensor accuracy. 
 
In order to overcome the limitations of the 3D sensor, a 2D planar robotic grasp has been 
researched using a Convolutional Neural Network (CNN). In [3] proposed region base 
grasp network trained with Cornell Dataset [9] to extract features and achieve real-time 
performance by removing the process of searching potential grasps. A multi-modal fusion 
method is introduced in [10], combining RGB and depth data. The method improves the 
grasp detection accuracy on the Cornell grasping dataset by fusing RGB and depth 
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features. In the research [11], fully CNN based on Gaussian kernel to encode the central 
point of grasping is trained and compared with Cornell and Jacquard datasets. A Grasp 
Quality Convolutional Neural Network (GQ-CNN) was presented [12] to classify the 
potential grasps, which is trained with Dex-Net 2.0. However, these approaches are 
trained with large datasets but still fail to detect the grasp in some cases. In this paper, 
we utilized the U-Net [13] model trained with 70+ images to segment the object and 
projected it into 3D Point Cloud to determine the grasp location on the object's surface 
reliably. 

3 DATASET 

The dataset preparation starts with the image acquisition from the Azure Kinect camera. 
In total, 74 images are captured, and the model is trained based on these 74 images. 
Then, the images are cropped down to the Region of Interest (RoI). i.e., to the location of 
the bin. Next, the cropped images are labelled using online tools to obtain the 
annotation, and the dataset is prepared. These images and masks are then augmented 
with various methods, for example, shuffling the colour channels to enhance the learning 
process during training. The process flows as shown the Figure 1. 

 

Figure 1: Process of Data Preparation. 

3.1 IMAGE ACQUISITION AND LABELLING 

Image Acquisition is the initial process in data preparation. This study uses the Azure 
Kinect camera positioned above the robot's environment, as shown in Figure 2 (a), to 
capture the RGB images and 3D Point Clouds. A total of 74 images are captured for the 
data preparation.  
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One of the work motivations is to achieve the goal with minimum labelling effort. Since 
the bin is placed in a fixed location with respect to the camera, the RoI is easily 
determined, and images are cropped to RoI with a dimension of 450 pixels x 650 pixels (H 
x W) as in Figure 2 (b). Finally, the cropped images are labelled with the help of open-
source online tools to generate annotation files. 

 

Figure 2: (a) Actual image from Azure Kinect (b) Cropped image to RoI. 

3.2 MASK GENERATION 

The annotation file obtained from the labelling process is used to generate the masks 
using the OpenCV library [14]. The dataset consists of 5 classes: background, the surface 
of the cube or cuboid, the surface of the octagonal prism, the border of the cube or 
cuboid and the border of the octagonal prism. The example is shown in Figure 3. 

 

Figure 3: Dataset with Mask with Border (a) Actual Image (b) its corresponding Mask. 

3.3 DATA AUGMENTATION 

One of the advantages of using U-Net is its efficiency in learning the segmentation task 
from a smaller dataset. However, data augmentation is used to increase the training more 
efficiently and avoid over-fitting.  
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In this work, a few augmentation methods are used, such as flipping the image and mask 
horizontally or vertically, shuffling the color channels of the images, and altering the 
contrast of the images to make the model robust in changing lighting conditions and 
changing the strength of the object colors. 
 

 

Figure 4: Image augmentation of input images A. 

4 MODEL IMPLEMENTATION 

This work trains U-Net with the dataset prepared in the Section 3. Mean Intersection-
Over-Union (IOU) is chosen as the metric to monitor the model. The model weights with 
the best validation mean IOU score is saved. The dataset is divided in the ratio of 90: 5: 5, 
i.e., 90% of the data are taken for training the model, 5% of the data for validating the 
model and the remaining 5% for testing the model's performance. 

4.1 MODEL PARAMETER 

The U-Net architecture is taken from [13] as the Keras model and trained to recognize five 
classes.  Furthermore, U-Net accepts images with height and width in the multiples of 32.  
The images are padded with zeros.  Therefore, the input layer is 656 x 656 x 3 and the 
output layer of the model is 656 x 656 x 5.  Since it is a multi-class classification problem, 
categorical cross-entropy [15] is used for calculating the loss.  With batch size set to 4, the 
model is trained for 120 Epochs.  All other model parameters and configurations are 
mentioned in Error! Reference source not found.. 
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Parameters Configurations 
 
 

1. Input Image Size  656 x 656 x 3 (H x W x C) 
2. Mask Size  656 x 656 x 5(H x W X C) 
3. No of Classes  5 

4. Batch Size  4 
5. Model Input Layer Size  656 x 656 x 3 
6. Model Output Layer Size  656 x 656 x 5 
7. Trainable Parameters  1,941,173 
8. No of Epochs 120 
9. No of Iterations 13 
10. Loss Function  Categorical Crossentropy 
11. Evaluation Metric  Mean IOU 
12. Optimiser  Adam Optimiser 
13. Learning Rate  0.001 

Table 1: U-Net Model Training Configuration. 

4.2 INFERENCE 

In this section, the results of the training process, such as training statistics, Model 
prediction, are analyzed. 

4.2.1 TRAINING STATISTICS 

The U-Net model is trained for 120 Epochs, and the best weight of the model is saved by 
monitoring the validation set mean IOU score. The Figure 5 shows the Mean IOU score 
observed during the training process and validation of the model. The maximum mean 
IOU achieved for the validation set is 83.3%. 

 

Figure 5: Training Statistics for the model 
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4.2.2 MODEL OUTPUT 

In this section, the model outputs are compared Figure 6 shows the model's predictions. 
The Figure 6 has two rows and three columns. Row 1 is the input image to the model, and 
row 2 is the predictions of the respective input images. Columns represent three example 
images taken for comparison. 
In example 1, the input image has a few objects such as a screw, a 3D printed part with a 
screw and a bigger cube. These objects are considered background. The bigger cube is 
used in the training process to check whether the model can also learn the objects’ size. 
The model has learned the object’s size and provided better results for the example 
images. The borders in masks also helped the model learn the difference between the 
background and the objects. This helps detect object instances. 

 

Figure 6: Model predictions 

5 POST PROCESSING 

U-Net provides the segmented output to the input image. To perform pick and place 
operations, it is necessary to have the object instances. Therefore, post-processing is 
developed to find the object instances. The model's output containing the cube or cuboid 
surface area and octagonal prisms are only taken for computation. 
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5.1 IMPLEMENTATION 

The post-process consists of four steps. These steps are formulated to remove the noise 
or false predictions in the model's output, detect the object instances and extract the 
contours of the respective objects. 
In Figure 7, the instance for the octagonal prisms is extracted using the post-process. The 
input to the post-process is the segmented output of the model. The instances of the 
objects are numbered in the order of performing the pick and place operation. 

 

Figure 7: Steps in Post-process. 

5.1.1 DISTANCE TRANSFORMATION 

The distance transformation provides the greyscale image in which the intensity indicates 
the closest boundary between object and background. The region of pixels separating the 
object and background has a lower distance, and the peak distance values are found at 
the object's center. Furthermore, the distance map is normalized between 0 and 1. It is 
then filtered for the values ranging between 0.4 and 1.0 to eliminate any unwanted false 
predictions in the model's output. [16] Distance transformation is done using Euclidean 
distance in the OpenCV library. 

5.1.2 CONTOUR DETECTION 

After the distance transformation, contour detection is used to determine the contours of 
the objects. The contours of the objects are collected to determine the object instances. 
The Figure 8 shows the result after applying contour detection. 

5.1.3 WATERSHED ALGORITHM 

The resulting contours from the distance transformation are smaller because of the 
threshold used to filter the noise. To restore the contours detected to their original sizes, 
Watershed Algorithm is used. 
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5.1.4 INSTANCE DETECTION 

In this final step, the instances of the object are detected, and the object's center is 
determined. In Figure 8, it can be noted that all the objects are marked with "X" and 
numbered in (f), which is the result of instance detection. 
 

 

Figure 8: (a) is the input image. (b) is the model prediction. (c) is the output of distance transformation. 

5.2 RESULT COMPARISON 

To decide whether the model can be used for the actual detection process, it is essential 
to compare the outputs of the model combined with the post-processing algorithm. The 
aspects such as the number of objects detected, the model's ability to learn the size of 
the object, number of false detectors are considered. 
The Figure 9 shows the comparison of the outputs of the model combined with the post-
processing algorithm with the real images. The figure consists of three rows and two 
columns. Columns two and four represent the outputs of the model combined with the 
post-processing algorithm. Columns one and three represent the input images. Rows 
represent the different images taken for the process of selection. To measure the 
performance of the algorithm, F1 score is used. 
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Figure 9: Comparison of Input Image and final prediction. 

 
F1 score comparison: F1 score is the harmonic mean of precision and recall [17]. It 
considers the True Positives (TP), False Positives (FP) and False Negatives (FN) as shown in 
equation ( 1).  

𝐹1 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

( 1) 

From Figure 9, the following table Error! Reference source not found. is derived for the 
algorithm. All the entries in the table are derived from the figures. The mean F1 score of 
the algorithm is 95%. Therefore, the algorithm is suited for this work. 

 

Examples TP FP FN F1 Score 
1 8 0 2 0.88 
2 11 0 0 1.0 
3 10 0 0 1.0 
4 9 0 2 0.9 
5 11 0 0 1.0 
6 10 0 1 0.95 

Mean F1 Score 0.95 

Table 2: F1 score computation 
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6 POINT CLOUD 

Point clouds are the 3D data form used to obtain detailed information about objects and 
environments produced by the 3D camera [18]. In this study, the Azure Kinect camera is 
used to convert the 2D depth map from the depth camera into a 3D point cloud of the 
camera coordinate system. This provides the RGB image with the pixel's location with 
respect to the origin of the camera coordinate system. 

6.1 DETERMINATION OF PICKING POINT'S LOCATION 

From the post-process (Section 5), the picking point of the object is determined, and the 
object's location with respect to the camera is selected. To find the location of this pixel 
with respect to the camera coordinate system in the XYZ image is the array containing the 
location of each pixel with respect to the camera in the RGB image. 
 

 

Figure 10: Steps to extract pick point from XYZ image. 

 
The Figure 11 has 2 images. (a) is the result provided by the algorithm (b) is the pick point 
(green point at the center of the green circle) location in the 3D point cloud which 
belongs to the square 2 in (a). 
 

 

Figure 11: Pick point extraction from XYZ image. 



 12 

7 ROBOT ARM MANIPULATION 

Robot arms have found a wide application in many sectors such as production, medicine, 
food service and many more. Depending upon the application, the structure and other 
aspects of the Robot are determined. When the application involves a difficult position to 
be reached, the Robot structure also changes. 

7.1 HARDWARE 

In this work, Horst600, an industrial robot arm used in this work. It is manufactured by 
fruitcore robotics GmbH. It uses a vacuum gripper from Schmalz, which is ideal for 
gripping light-weighted objects with smooth flat surfaces. The Robot has six joints, and all 
the joints are rotational joints. Rotation of the joints is restricted to a certain extent. 

7.2 COORDINATE SYSTEM 

To localize an object precisely, a 6D pose needs to be estimated with respect to the 
camera. 6D represents the object's location in x, y and z and the orientation of the object 
roll, pitch, and yaw along the axes. The coordinate relationship between the robot and 
camera is well defined to achieve object pick action. 

 

Figure 12: Simplified representation of coordinate systems. 1 is the robot coordinate system and 2 is the 
camera coordinate system. 
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7.2.1 ROBOT COORDINATE SYSTEM 

The Robot Coordinate system represents moving parts of the robot in a single coordinate 
system. Usually, the coordinate system of the robot's base is chosen as the origin, as 
shown in Figure 12. The end-effector (i.e. gripper) pose is calculated with respect to the 
robot's origin coordinate system. 

7.2.2 CAMERA COORDINATE SYSTEM 

Camera Coordinate is like the robot coordinate system. When the object is localized using 
point clouds, the object is located with respect to the camera coordinate system. 

7.2.3 RELATIONSHIP BETWEEN THE COORDINATE SYSTEM 

The relationship between the camera and robot coordinate system needs to be 
determined by estimating the position and orientation of the camera with respect to the 
robot origin coordinate system. By performing rigid body transformation [19], the object's 
position and orientation with respect robot are computed. 
 

 

Figure 13: Robot setup in working environment. 

 
The Figure 13 shows the front (a) and side (b) view of the working robot and camera 
setup, where the camera is fixed above the bin. 
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𝑅 =  (
cos 𝛼 cos 𝛽 cos 𝛾 − sin 𝛼 sin 𝛾 − cos 𝛼 cos 𝛽 sin 𝛾 − sin 𝛼 cos 𝛾 cos 𝛼 sin 𝛽
sin 𝛼 cos 𝛽 cos 𝛾 + cos 𝛼 sin 𝛾 − sin 𝛼 cos 𝛽 sin 𝛾 + cos 𝛼 cos 𝛾 sin 𝛼 sin 𝛽

−sin 𝛽 cos 𝛾 sin 𝛽 sin 𝛾 cos 𝛽
) 

( 2) 

𝑇 =  (𝑅 𝑝
0 1) 

( 3) 

Equation ( 2) represents rotation matrix 𝑅 calculation where 𝛼, 𝛽 and 𝛾 are roll, pitch and 
yaw, respectively between frames. Using equation (2), the transformation matrix 𝑇 of size 
4x4 is calculated as shown in equation (3), where 𝑝 represents the position 𝑥, 𝑦 and 𝑧, the 
distance between two frames. Finally, object pose with respect to the robot 𝑇𝑟𝑝 is 

generated by multiplying the transformation matrix between robot and camera 𝑇𝑟𝑐 and 
the transformation matrix between the camera and recognized object 𝑇𝑐𝑝. 

𝑇𝑟𝑝 =  𝑇𝑟𝑐  × 𝑇𝑐𝑝 

( 4) 

In the study, we are performing a 2D-planar grasp; therefore, the object's orientation is 
not considered during the pick and place robot action. 

8 CONCLUSION AND FUTURE SCOPE 

The work aims to develop a Bin picking solution using Deep Learning. One of the primary 
purposes of this work is to train a model with fewer samples. Usually, for training Deep 
Learning models, one may require hundreds of samples for training. To achieve these 
goals, U-Net is selected, and the dataset size is limited to 74. U-Net gives only segmented 
output. Therefore, a post-processing algorithm is developed to obtain the instances and 
pick points of objects detected. 
 
F1 scores for the algorithm's output are checked to find if the model is suitable for the 
task. The mean F1 score of the model was 95%. Therefore, the model is selected for 
implementation for bin picking.  
 
The relation between the Robot and camera coordinate systems was determined. 
Sequences of trajectory paths were formed and used to pick and place the objects 
according to their class. However, when the objects are placed at complex orientations, 
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the computer vision algorithm cannot determine the orientations of the objects required 
for grasping. 
 
In future, this bin picking solution can be improved further by determining the 6D pose of 
the objects. This will enable the algorithm to grasp the object placed at complex 
orientations. 



 

 

REFERENCES 
[1] H. Tachikake and W. Watanabe, “A Learning-based Robotic Bin-picking with Flexibly 
Customizable Grasping Conditions,” in 2020 IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020, pp. 9040–9047. 

[2] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” The 
International Journal of Robotics Research, vol. 34, 4-5, pp. 705–724, 2015, doi: 
10.1177/0278364914549607. 

[3] . U. Asif, J. Tang, and S. Harrer, “Densely Supervised Grasp Detector (DSGD),” Jan. 2018. 
[Online]. Available: https://arxiv.org/pdf/1810.03962 

[4] J. Redmon and A. Angelova, “Real-Time Grasp Detection Using Convolutional Neural 
Networks,” Sep. 2014. [Online]. Available: https://arxiv.org/pdf/1412.3128 

[5] G. Wu, W. Chen, H. Cheng, W. Zuo, D. Zhang, and J. You, “Multi-Object Grasping 
Detection With Hierarchical Feature Fusion,” IEEE Access, vol. 7, pp. 43884–43894, 2019, 
doi: 10.1109/ACCESS.2019.2908281. 

[6] Y. Chen and G. Medioni, “Object modeling by registration of multiple range images,” in 
Proceedings. 1991 IEEE International Conference on Robotics and Automation, 
Sacramento, CA, USA, 1991, pp. 2724–2729. 

[7] J. Guo, L. Fu, M. Jia, K. Wang, and S. Liu, “Fast and Robust Bin-picking System for 
Densely Piled Industrial Objects,” Dec. 2020. [Online]. Available: http://arxiv.org/pdf/
2012.00316v2 

[8] A. Gupta, A. Jadhav, and P. V. N. Korupolu, “Low Cost Bin Picking Solution for E-
Commerce Warehouse Fulfillment Centers,” doi: 2019. 

[9] I. Lenz, H. Lee, and A. Saxena, “Deep Learning for Detecting Robotic Grasps,” Jan. 2013. 
[Online]. Available: https://arxiv.org/pdf/1301.3592 

[10] Z. Wang, Z. Li, B. Wang, and H. Liu, “Robot grasp detection using multimodal deep 
convolutional neural networks,” Advances in Mechanical Engineering, vol. 8, no. 9, 
168781401666807, 2016, doi: 10.1177/1687814016668077. 

[11] H. Cao, G. Chen, Z. Li, J. Lin, and A. Knoll, “Lightweight Convolutional Neural Network 
with Gaussian-based Grasping Representation for Robotic Grasping Detection,” Jan. 2021. 
[Online]. Available: http://arxiv.org/pdf/2101.10226v1 

[12] J. Mahler et al., “Dex-Net 2.0: Deep Learning to Plan Robust Grasps with Synthetic 
Point Clouds and Analytic Grasp Metrics,” Mar. 2017. [Online]. Available: https://arxiv.org
/pdf/1703.09312 



 

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for 
Biomedical Image Segmentation,” May. 2015. [Online]. Available: https://arxiv.org/pdf/
1505.04597 

[14] G. Bradski, “The OpenCV Library,” 2000. 

[15] S. Mannor, D. Peleg, and R. Rubinstein, “The cross entropy method for classification,” 
in Proceedings of the 22nd international conference on Machine learning - ICML '05, Bonn, 
Germany, 2005, pp. 561–568. 

[16] T. Strutz, “The Distance Transform and its Computation,” TECHP. [Online]. Available: 
https://arxiv.org/pdf/2106.03503 

[17] Z. C. Lipton, C. Elkan, and B. Narayanaswamy, “Thresholding Classifiers to Maximize 
F1 Score,” Aug. 2014. [Online]. Available: https://arxiv.org/pdf/1402.1892 

[18] S. May, K. Pervoelz, and H. Surm, “3D Cameras: 3D Computer Vision of Wide Scope,” 
in Vision Systems: Applications, G. Obinata and A. Dutt, Eds.: I-Tech Education and 
Publishing, 2007. 

[19] P. R. Evans, “Rotations and rotation matrices,” Acta crystallographica. Section D, 
Biological crystallography, vol. 57, Pt 10, pp. 1355–1359, 2001, doi: 
10.1107/S0907444901012410. 



Herausgeber

Prof. Dr. Heinz-Leo Dudek
Prorektor und Dekan der Fakultät für Technik

Duale Hochschule Baden-Württemberg Ravensburg
Baden-Wuerttemberg Cooperative State University
Marienplatz 2
88212 Ravensburg

ISBN 978-3-945557-12-9

ISSN 2199-238X

DOI 10.12903/DHBW_RV_FN_02_2022_PRACHANDABHANU_BAKTHAVATCHALAM_DALM


	1 Introduction and Aim
	2 Related Work
	3 Dataset
	3.1 Image acquisition and labelling
	3.2 Mask Generation
	3.3 Data Augmentation

	4 Model Implementation
	4.1 Model Parameter
	4.2 Inference
	4.2.1 Training Statistics
	4.2.2 Model Output


	5 Post Processing
	5.1 Implementation
	5.1.1 Distance Transformation
	5.1.2 Contour Detection
	5.1.3 Watershed Algorithm
	5.1.4 Instance Detection

	5.2 Result Comparison

	6 Point Cloud
	6.1 Determination of Picking Point's Location

	7 Robot arm manipulation
	7.1 Hardware
	7.2 Coordinate system
	7.2.1 Robot Coordinate system
	7.2.2 Camera coordinate system
	7.2.3 Relationship between the coordinate system


	8 Conclusion and Future Scope

